
陈晨 教授
博士生导师
国家杰出青年科学基金获得者
地址:北京市海淀区清华大学化学馆117
电话:010-62791240
E-mail:cchen@mail.tsinghua.edu.cn
ORCID: 0000-0001-5902-3037
ResearcherID: G-3772-2015
工作履历
2021–至今 清华大学,化学系,教授
2015–2021 清华大学,化学系,副教授
2011–2014 美国劳伦斯伯克利国家实验室,材料科学部,博士后
教育背景
2006–2011 清华大学,化学系,博士
2010–2011 美国加州大学伯克利分校,化学系,联合培养
2002–2006 北京理工大学,化学系,学士
研究领域
无机材料、催化、新能源、二氧化碳转化
奖励与荣誉
科睿唯安“高被引学者”(2021–2024年)
清华大学先进工作者(2020年)
获国家杰出青年科学基金支持(2019年)
中国化学会青年化学奖(2018年)
获北京市杰出青年科学基金支持(2018年)
代表性论文
[1] Three-Dimensional Mesoporous Covalent Organic Framework for Photocatalytic Oxidative Dehydrogenation to Quinoline, J. Am. Chem. Soc., 2024, DOI: 10.1021/jacs.4c12286.
[2] Constructing Asymmetric Fe–Nb Diatomic Sites to Enhance ORR Activity and Durability, J. Am. Chem. Soc., 2024, 146, 26442–26453.
[3] Direct Microenvironment Modulation of CO2 Electroreduction: Negatively Charged Ag Sites Going beyond Catalytic Surface Reactions, Angew. Chem. Int. Ed., 2024, 63, e202408580.
[4] Carbon-Boosted and Nitrogen-Stabilized Isolated Single-Atom Sites for Direct Dehydrogenation of Lower Alkanes J. Am. Chem. Soc., 2024, 146, 20668–20677.
[5] Microenvironment reconstitution of highly active Ni single atoms on oxygen-incorporated Mo2C for water splitting, Nat. Commun., 2024, 15, 1342.
[6] Engineering Molecular Heterostructured Catalyst for Oxygen Reduction Reaction, J. Am. Chem. Soc., 2023, 145, 21273–21283.
[7] Stabilizing Copper by a Reconstruction-Resistant Atomic Cu–O–Si Interface for Electrochemical CO2 Reduction, J. Am. Chem. Soc., 2023, 145, 8656–8664.
[8] p-Block Bismuth Nanoclusters Sites Activated by Atomically Dispersed Bismuth for Tandem Boosting Electrocatalytic Hydrogen Peroxide Production, Angew. Chem. Int. Ed., 2023, 62, e202304488.
[9] p-Block-metal bismuth-based electrocatalysts featuring tunable selectivity for high-performance oxygen reduction reaction, Joule, 2023, 7, 1003–1015.
[10] Heterogeneous Iridium Single-Atom Molecular-like Catalysis for Epoxidation of Ethylene, J. Am. Chem. Soc., 2023, 145, 6658–6670.
[11] Single-Atom-Mediated Spinel Octahedral Structures for Elevated Performances of Li–Oxygen Batteries, Angew. Chem. Int. Ed., 2023, e202218926.
[12] Interfacial water engineering boosts neutral water reduction, Nat. Commun., 2022, 13, 6260.
[13] Nature-Inspired Design of Molybdenum–Selenium Dual-Single-Atom Electrocatalysts for CO2 Reduction, Adv. Mater., 2022, 34, 2206478.
[14] Construction of N, P Co-Doped Carbon Frames Anchored with Fe Single Atoms and Fe2P Nanoparticles as a Robust Coupling Catalyst for Electrocatalytic Oxygen Reduction, Adv. Mater., 2022, 34, 2203621.
[15] Cobalt Single Atom Incorporated in Ruthenium Oxide Sphere: A Robust Bifunctional Electrocatalyst for HER and OER, Angew. Chem. Int. Ed., 2022, 61, e202114951.
[16] Anion-exchange-mediated internal electric field for boosting photogenerated carrier separation and utilization, Nat. Commun., 2021, 12, 4952.
[17] Constructing FeN4/Graphitic Nitrogen Atomic Interface for High-efficiency Electrochemical CO2 Reduction over a Broad Potential Window, Chem, 2021, 7, 1297–1307.
[18] Synergistically Interactive Pyridinic–N–MoP Sites: Identified Active Centers for Enhanced Hydrogen Evolution in Alkaline Solution, Angew. Chem. Int. Ed., 2020, 59, 8982–8990.
[19] Copper Atom-pair Catalyst Anchored on Alloy Nanowires for Selective and Efficient Electrochemical Reduction of CO2, Nat. Chem., 2019, 11, 222–228.
[20] A Photochromic Composite with Enhanced Carrier Separation for the Photocatalytic Activation of Benzylic C–H Bonds in Toluene. Nat. Catal., 2018, 1, 704–710.
[21] Regulating the Coordination Structure of Single–atom Fe–NxCy Catalytic Sites for Benzene Oxidation, Nat. Commun., 2019, 10, 4290.
[22] MXene (Ti3C2) Vacancy Confined Single–Atom Catalyst for Efficient Functionalization of CO2, J. Am. Chem. Soc., 2019, 141, 4086–4093.
[23] Core-Shell ZIF-8@ZIF-67 Derived CoP Nanoparticles- Embedded N-doped Carbon Nanotube Hollow Polyhedron for Efficient Over-all Water Splitting, J. Am. Chem. Soc., 2018, 140, 2610–2618.
[24] Design of Single-Atom Co-N5 Catalytic Site: A Robust Electrocatalyst for CO2 Reduction with Nearly 100% CO Selectivity and Remarkable Stability, J. Am. Chem. Soc., 2018, 140, 4218–4221.
[25] Quantitative Study of Charge Carrier Dynamics in Well-Defined WO3 Nanowires and Nanosheets: Insight into the Crystal Facet Effect in Photocatalysis, J. Am. Chem. Soc., 2018, 140, 9078–9082.
[26] A Bimetallic Zn/Fe Polyphthalocyanine-Derived Single-Atom Fe-N4 Catalytic Site: A Superior Trifunctional Catalyst for Overall Water Splitting and Zn–Air Batteries, Angew. Chem. Int. Ed., 2018, 130, 8750–8754
[27] Single-Site AuI Catalyst for Silane Oxidation with Water, Adv. Mater., 2018, 30, 1704720.
[28] Highly Crystalline Multimetallic Nanoframes with Three- Dimensional Electrocatalytic Surfaces, Science, 2014, 343, 1339–1343.
[29] Mesoporous Multicomponent Nanocomposite Colloidal Spheres: Ideal High-Temperature Stable Model Catalyst, Angew. Chem. Int. Ed., 2011, 50, 3725–3729.
[30] Transition-Metal Phosphate Colloidal Spheres, Angew. Chem. Int. Ed., 2009, 48, 4816–4819.